Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 16.751
Filter
Add more filters

Publication year range
1.
Food Funct ; 15(9): 5000-5011, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38618651

ABSTRACT

The anti-obesity effect of conjugated linoleic acid (CLA) has been well elucidated, but whether CLA affects fat deposition by regulating intestinal dietary fat absorption remains largely unknown. Thus, this study aimed to investigate the effects of CLA on intestinal fatty acid uptake and chylomicron formation and explore the possible underlying mechanisms. We found that CLA supplementation reduced the intestinal fat absorption in HFD (high fat diet)-fed mice accompanied by the decreased serum TG level, increased fecal lipids and decreased intestinal expression of ApoB48 and MTTP. Correspondingly, c9, t11-CLA, but not t10, c12-CLA induced the reduction of fatty acid uptake and TG content in PA (palmitic acid)-treated MODE-K cells. In the mechanism of fatty acid uptake, c9, t11-CLA inhibited the binding of CD36 with palmitoyltransferase DHHC7, thus leading to the decreases of CD36 palmitoylation level and localization on the cell membrane of the PA-treated MODE-K cells. In the mechanism of chylomicron formation, c9, t11-CLA inhibited the formation of the CD36/FYN/LYN complex and the activation of the ERK pathway in the PA-treated MODE-K cells. In in vivo verification, CLA supplementation reduced the DHHC7-mediated total and cell membrane CD36 palmitoylation and suppressed the formation of the CD36/FYN/LYN complex and the activation of the ERK pathway in the jejunum of HFD-fed mice. Altogether, these data showed that CLA reduced intestinal fatty acid uptake and chylomicron formation in HFD-fed mice associated with the inhibition of DHHC7-mediated CD36 palmitoylation and the downstream ERK pathway.


Subject(s)
CD36 Antigens , Chylomicrons , Diet, High-Fat , Linoleic Acids, Conjugated , MAP Kinase Signaling System , Mice, Inbred C57BL , Animals , CD36 Antigens/metabolism , CD36 Antigens/genetics , Linoleic Acids, Conjugated/pharmacology , Mice , Male , Chylomicrons/metabolism , MAP Kinase Signaling System/drug effects , Diet, High-Fat/adverse effects , Fatty Acids/metabolism , Acyltransferases/metabolism , Acyltransferases/genetics , Intestinal Absorption/drug effects
2.
Cell Rep ; 43(4): 114093, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38602875

ABSTRACT

The storage of fat within lipid droplets (LDs) of adipocytes is critical for whole-body health. Acute fatty acid (FA) uptake by differentiating adipocytes leads to the formation of at least two LD classes marked by distinct perilipins (PLINs). How this LD heterogeneity arises is an important yet unresolved cell biological problem. Here, we show that an unconventional integral membrane segment (iMS) targets the adipocyte specific LD surface factor PLIN1 to the endoplasmic reticulum (ER) and facilitates high-affinity binding to the first LD class. The other PLINs remain largely excluded from these LDs until FA influx recruits them to a second LD population. Preventing ER targeting turns PLIN1 into a soluble, cytoplasmic LD protein, reduces its LD affinity, and switches its LD class specificity. Conversely, moving the iMS to PLIN2 leads to ER insertion and formation of a separate LD class. Our results shed light on how differences in organelle targeting and disparities in lipid affinity of LD surface factors contribute to formation of LD heterogeneity.


Subject(s)
Adipocytes , Cell Differentiation , Endoplasmic Reticulum , Lipid Droplets , Lipid Droplets/metabolism , Adipocytes/metabolism , Animals , Mice , Endoplasmic Reticulum/metabolism , Perilipins/metabolism , Humans , 3T3-L1 Cells , Fatty Acids/metabolism , Perilipin-1/metabolism , Perilipin-2/metabolism
3.
Microbiome ; 12(1): 73, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38605412

ABSTRACT

BACKGROUND: The utilization of mulberry branch fiber (MF), the largest by-product of the sericulture industry, is an important issue. Supplementation with MF as a dietary fiber for poultry may serve as a useful application. However, little is known about the effects of MF on liver lipid metabolism and egg yolk fatty acid composition of laying hens and their underlying mechanisms. In this study, we performed a multi-omics investigation to explore the variations in liver lipid metabolism, egg yolk fatty acid composition, gut microbiota, and the associations among them induced by dietary MF in laying hens. RESULTS: Dietary MF had no harmful effects on the laying performance or egg quality in laying hens. The enzyme activities associated with lipid metabolism in the liver were altered by the addition of 5% MF, resulting in reduced liver fat accumulation. Furthermore, dietary 5% MF induced the variation in the fatty acid profiles of egg yolk, and increased the polyunsaturated fatty acid (PUFA) content. We observed a significant reduction in the diversity of both gut bacteria and changes in their compositions after the addition of MF. Dietary MF significantly increased the abundance of genes involved in fatty acid biodegradation, and short-chain fatty acids biosynthesis in the gut microbiota of laying hens. The significant correlations were observed between the liver lipid metabolism enzyme activities of hepatic lipase, lipoprotein lipase, and total esterase with gut microbiota, including negative correlations with gut microbiota diversity, and multiple correlations with gut bacteria and viruses. Moreover, various correlations between the contents of PUFAs and monounsaturated fatty acids in egg yolk with the gut microbiota were obtained. Based on partial-least-squares path modeling integrated with the multi-omics datasets, we deduced the direct effects of liver enzyme activities and gut bacterial compositions on liver fat content and the roles of liver enzyme activities and gut bacterial diversity on egg yolk fatty acid composition. CONCLUSIONS: The results indicate that dietary MF is beneficial to laying hens as it reduces the liver fat and improves egg yolk fatty acid composition through the enterohepatic axis. Video Abstract.


Subject(s)
Fatty Acids , Morus , Animals , Female , Fatty Acids/metabolism , Egg Yolk/metabolism , Morus/metabolism , Lipid Metabolism , Chickens/metabolism , Diet , Fatty Acids, Unsaturated/metabolism , Animal Feed/analysis , Dietary Supplements
4.
Article in English | MEDLINE | ID: mdl-38619980

ABSTRACT

Two Gram-stain-negative bacterial strains, R39T and R73T, were isolated from the rhizosphere soil of the selenium hyperaccumulator Cardamine hupingshanesis in China. Strain R39T transformed selenite into elemental and volatile selenium, whereas strain R73T transformed both selenate and selenite into elemental selenium. Phylogenetic and phylogenomic analyses indicated that strain R39T belonged to the genus Achromobacter, while strain R73T belonged to the genus Buttiauxella. Strain R39T (genome size, 6.68 Mb; G+C content, 61.6 mol%) showed the closest relationship to Achromobacter marplatensis LMG 26219T and Achromobacter kerstersii LMG 3441T, with average nucleotide identity (ANI) values of 83.6 and 83.4 %, respectively. Strain R73T (genome size, 5.22 Mb; G+C content, 50.3 mol%) was most closely related to Buttiauxella ferragutiae ATCC 51602T with an ANI value of 86.4 %. Furthermore, strain A111 from the GenBank database was found to cluster with strain R73T within the genus Buttiauxella through phylogenomic analyses. The ANI and digital DNA-DNA hybridization values between strains R73T and A111 were 97.5 and 80.0% respectively, indicating that they belong to the same species. Phenotypic characteristics also differentiated strain R39T and strain R73T from their closely related species. Based on the polyphasic analyses, strain R39T and strain R73T represent novel species of the genera Achromobacter and Buttiauxella, respectively, for which the names Achromobacter seleniivolatilans sp. nov. (type strain R39T=GDMCC 1.3843T=JCM 36009T) and Buttiauxella selenatireducens sp. nov. (type strain R73T=GDMCC 1.3636T=JCM 35850T) are proposed.


Subject(s)
Achromobacter , Cardamine , Selenium , Fatty Acids/chemistry , Sequence Analysis, DNA , Cardamine/genetics , Phylogeny , Rhizosphere , Base Composition , DNA, Bacterial/genetics , Bacterial Typing Techniques , RNA, Ribosomal, 16S/genetics , Selenious Acid
5.
Molecules ; 29(7)2024 Mar 24.
Article in English | MEDLINE | ID: mdl-38611729

ABSTRACT

Royal jelly (RJ) is recognized as beneficial to mammalian health. Multilineage differentiation potential is an important property of mesenchymal stem cells (MSCs). C2C12 cells have an innate ability to differentiate into myogenic cells. Like MSCs, C2C12 cells can also differentiate into osteoblast- and adipocyte-lineage cells. We recently reported that RJ enhances the myogenic differentiation of C2C12 cells. However, the effect of RJ on osteoblast or adipocyte differentiation is still unknown. Here in this study, we have examined the effect of RJ on the osteoblast and adipocyte differentiation of C2C12 cells. Protease-treated RJ was used to reduce the adverse effects caused by RJ supplementation. To induce osteoblast or adipocyte differentiation, cells were treated with bone morphogenetic proteins (BMP) or peroxisome proliferator-activated receptor γ (PPARγ) agonist, respectively. RNA-seq was used to analyze the effect of RJ on gene expression. We found that RJ stimulates osteoblast and adipocyte differentiation. RJ regulated 279 genes. RJ treatment upregulated glutathione-related genes. Glutathione, the most abundant antioxidative factor in cells, has been shown to promote osteoblast differentiation in MSC and MSC-like cells. Therefore, RJ may promote osteogenesis, at least in part, through the antioxidant effects of glutathione. RJ enhances the differentiation ability of C2C12 cells into multiple lineages, including myoblasts, osteoblasts, and adipocytes.


Subject(s)
Antioxidants , Fatty Acids , Animals , Cell Differentiation , Glutathione , Myoblasts , Mammals
6.
Int J Mol Sci ; 25(7)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38612907

ABSTRACT

Age-related Macular Degeneration (AMD) is a multifactorial ocular pathology that destroys the photoreceptors of the macula. Two forms are distinguished, dry and wet AMD, with different pathophysiological mechanisms. Although treatments were shown to be effective in wet AMD, they remain a heavy burden for patients and caregivers, resulting in a lack of patient compliance. For dry AMD, no real effective treatment is available in Europe. It is, therefore, essential to look for new approaches. Recently, the use of long-chain and very long-chain polyunsaturated fatty acids was identified as an interesting new therapeutic alternative. Indeed, the levels of these fatty acids, core components of photoreceptors, are significantly decreased in AMD patients. To better understand this pathology and to evaluate the efficacy of various molecules, in vitro and in vivo models reproducing the mechanisms of both types of AMD were developed. This article reviews the anatomy and the physiological aging of the retina and summarizes the clinical aspects, pathophysiological mechanisms of AMD and potential treatment strategies. In vitro and in vivo models of AMD are also presented. Finally, this manuscript focuses on the application of omega-3 fatty acids for the prevention and treatment of both types of AMD.


Subject(s)
Fatty Acids, Omega-3 , Geographic Atrophy , Wet Macular Degeneration , Humans , Fatty Acids, Unsaturated/therapeutic use , Fatty Acids , Fatty Acids, Omega-3/therapeutic use
7.
Nutrients ; 16(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38612996

ABSTRACT

Managing atherosclerotic cardiovascular disease (ASCVD) often involves a combination of lifestyle modifications and medications aiming to decrease the risk of cardiovascular outcomes, such as myocardial infarction and stroke. The aim of this article is to discuss possible omega-3 (n-3) fatty acid-statin interactions in the prevention and treatment of ASCVD and to provide evidence to consider for clinical practice, highlighting novel insights in this field. Statins and n-3 fatty acids (eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)) are commonly used to control cardiovascular risk factors in order to treat ASCVD. Statins are an important lipid-lowering therapy, primarily targeting low-density lipoprotein cholesterol (LDL-C) levels, while n-3 fatty acids address triglyceride (TG) concentrations. Both statins and n-3 fatty acids have pleiotropic actions which overlap, including improving endothelial function, modulation of inflammation, and stabilizing atherosclerotic plaques. Thus, both statins and n-3 fatty acids potentially mitigate the residual cardiovascular risk that remains beyond lipid lowering, such as persistent inflammation. EPA and DHA are both substrates for the synthesis of so-called specialized pro-resolving mediators (SPMs), a relatively recently recognized feature of their ability to combat inflammation. Interestingly, statins seem to have the ability to promote the production of some SPMs, suggesting a largely unrecognized interaction between statins and n-3 fatty acids with relevance to the control of inflammation. Although n-3 fatty acids are the major substrates for the production of SPMs, these signaling molecules may have additional therapeutic benefits beyond those provided by the precursor n-3 fatty acids themselves. In this article, we discuss the accumulating evidence that supports SPMs as a novel therapeutic tool and the possible statin-n-3 fatty acid interactions relevant to the prevention and treatment of ASCVD.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Fatty Acids, Omega-3 , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Humans , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/prevention & control , Atherosclerosis/drug therapy , Atherosclerosis/prevention & control , Docosahexaenoic Acids/therapeutic use , Eicosapentaenoic Acid/pharmacology , Eicosapentaenoic Acid/therapeutic use , Fatty Acids , Inflammation
8.
BMC Public Health ; 24(1): 1061, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627688

ABSTRACT

BACKGROUND: Age-related cognitive decline has a significant impact on the health and longevity of older adults. Circulating very long-chain saturated fatty acids (VLSFAs) may actively contribute to the improvement of cognitive function. The objective of this study was to investigate the associations between arachidic acid (20:0), docosanoic acid (22:0), tricosanoic acid (23:0), and lignoceric acid (24:0) with cognitive function in older adults. METHODS: This study used a dataset derived from the 2011-2014 National Health and Nutrition Examination Survey (NHANES). A total of 806 adults (≥ 60 years) were included who underwent comprehensive cognitive testing and plasma fatty acid measurements. Multivariable linear regression, restricted cubic spline (RCS), and interaction analyses were used to assess associations between VLSFAs and cognitive function. Partial Spearman' s correlation analysis was used to examine the correlations between VLSFAs and palmitic acid (16:0), high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, total cholesterol, triglycerides, systemic inflammatory markers, and dietary nutrients. RESULTS: Multivariable linear regression analysis, adjusting for sociodemographic, clinical conditions, and lifestyle factors, showed that 22:0 and 24:0 levels were positively associated with better global cognitive function (ß = 0.37, 95% confidence interval [CI] = 0.01, 0.73; ß = 0.73, 95% CI = 0.29, 1.2, respectively) as well as better CEARD-DR Z-score (ß = 0.82, 95% CI = 0.36, 1.3 and ß = 1.2, 95% CI = 0.63, 1.8, respectively). RCS analysis showed linear associations between higher 22:0 and 24:0 levels and better cognitive performance in both global cognitive function and CERAD-DR tests. CONCLUSIONS: The study suggests that higher levels of 22:0 and 24:0 are associated with better global cognitive function in older adults. 22:0 and 24:0 may be important biomarkers for recognizing cognitive impairment, and supplementation with specific VLSFAs (22:0 and 24:0) may be an important intervention to improve cognitive function. Further studies are needed to elucidate the underlying biological mechanisms between VLSFAs and cognitive function.


Subject(s)
Cognition , Fatty Acids , Humans , Aged , Nutrition Surveys , Triglycerides , Cholesterol
9.
Plant Cell Rep ; 43(4): 107, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38558250

ABSTRACT

KEY MESSAGE: EgMADS3, a pivotal transcription factor, positively regulates MCFA accumulation via binding to the EgLPAAT promoter, advancing lipid content in mesocarp of oil palm. Lipids function as the structural components of cell membranes, which serve as permeable barriers to the external environment of cells. The medium-chain fatty acid in the stored lipids of plants is an important renewable energy. Most research on MCFA production in plant lipid synthesis is based on biochemical methods, and the importance of transcriptional regulation in MCFA synthesis and its incorporation into TAGs needs further research. Oil palm is the most productive oil crop in the world and has the highest productivity among the main oil crops. In this study, the MADS transcription factor (EgMADS3) in the mesocarp of oil palm was characterized. Through the VIGS-virus induced gene silencing, it was determined that the potential target gene of EgMADS3 was related to the biosynthesis of medium-chain fatty acid (MCFA). Transient transformation in protoplasts and qRT-PCR analysis showed that EgMADS3 positively regulated the expression of EgLPAAT. The results of the yeast one-hybrid assays and EMSA indicated the interaction between EgMADS3 and EgLPAAT promoter. Through genetic transformation and fatty acid analysis, it is concluded that EgMADS3 directly regulates the mid-chain fatty acid synthesis pathway of the potential target gene EgLPAAT, thus promotes the accumulation of MCFA and improves the total lipid content. This study is innovative in the functional analysis of the MADS family transcription factor in the metabolism of medium-chain fatty acids (MCFA) of oil palm, provides a certain research basis for improving the metabolic pathway of chain fatty acids in oil palm, and improves the synthesis of MCFA in plants. Our results will provide a reference direction for further research on improving the oil quality through biotechnology of oil palm.


Subject(s)
Arecaceae , Arecaceae/genetics , Arecaceae/metabolism , Fatty Acids/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Metabolic Networks and Pathways , Palm Oil/metabolism
10.
World J Microbiol Biotechnol ; 40(6): 168, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630156

ABSTRACT

Obesity is a growing epidemic worldwide. Several pharmacologic drugs are being used to treat obesity but these medicines exhibit side effects. To find out the alternatives of these drugs, we aimed to assess the probiotic properties and anti-obesity potentiality of a lactic acid bacterium E2_MCCKT, isolated from a traditional fermented rice beverage, haria. Based on the 16S rRNA sequencing, the bacterium was identified as Lactiplantibacillus plantarum E2_MCCKT. The bacterium exhibited in vitro probiotic activity in terms of high survivability in an acidic environment and 2% bile salt, moderate auto-aggregation, and hydrophobicity. Later, E2_MCCKT was applied to obese mice to prove its anti-obesity potentiality. Adult male mice (15.39 ± 0.19 g) were randomly divided into three groups (n = 5) according to the type of diet: normal diet (ND), high-fat diet (HFD), and HFD supplemented with E2_MCCKT (HFT). After four weeks of bacterial treatment on the obese mice, a significant reduction of body weight, triglyceride, and cholesterol levels, whereas, improvements in serum glucose levels were observed. The bacterial therapy led to mRNA up-regulation of lipolytic transcription factors such as peroxisome proliferator-activated receptor-α which may increase the expression of fatty acid oxidation-related genes such as acyl-CoA oxidase and carnitine palmitoyl-transferase-1. Concomitantly, both adipocytogenesis and fatty acid synthesis were arrested as reflected by the down-regulation of sterol-regulatory element-binding protein-1c, acetyl-CoA carboxylase, and fatty acid synthase genes. In protein expression study, E2_MCCKT significantly increased IL-10 expression while decreasing pro-inflammatory cytokine (IL-1Ra and TNF-α) expression. In conclusion, the probiotic Lp. plantarum E2_MCCKT might have significant anti-obesity effects on mice.


Subject(s)
Diet, High-Fat , Obesity , Male , Animals , Mice , Diet, High-Fat/adverse effects , Mice, Obese , RNA, Ribosomal, 16S/genetics , Fatty Acids
11.
Int J Mol Sci ; 25(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38612389

ABSTRACT

Alkaline earth metal oxide (MgO, CaO, SrO) catalysts supported on BEA zeolite were prepared by a wet impregnation method and tested in the transesterification reaction of rapeseed oil with methanol towards the formation of biodiesel (FAMEs-fatty acid methyl esters). To assess the influence of the SiO2/Al2O3 ratio on the catalytic activity in the tested reaction, a BEA zeolite carrier material with different Si/Al ratios was used. The prepared catalysts were tested in the transesterification reaction at temperatures of 180 °C and 220 °C using a molar ratio of methanol/oil reagents of 9:1. The transesterification process was carried out for 2 h with the catalyst mass of 0.5 g. The oil conversion value and efficiency towards FAME formation were determined using the HPLC technique. The physicochemical properties of the catalysts were determined using the following research techniques: CO2-TPD, XRD, BET, FTIR, and SEM-EDS. The results of the catalytic activity showed that higher activity in the tested process was confirmed for the catalysts supported on the BEA zeolite characterized by the highest silica/alumina ratio for the reaction carried out at a temperature of 220 °C. The most active zeolite catalyst was the 10% CaO/BEA system (Si/Al = 300), which showed the highest triglyceride (TG) conversion of 90.5% and the second highest FAME yield of 94.6% in the transesterification reaction carried out at 220 °C. The high activity of this system is associated with its alkalinity, high value of the specific surface area, the size of the active phase crystallites, and its characteristic sorption properties in relation to methanol.


Subject(s)
Biofuels , Zeolites , Magnesium Oxide , Methanol , Rapeseed Oil , Silicon Dioxide , Fatty Acids , Oxides
12.
Anal Methods ; 16(15): 2330-2339, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38562090

ABSTRACT

Fatty acids (FAs) are essential molecules in all organisms and are involved in various physiological and pathophysiological processes. Pentafluorobenzyl bromide (PFBBr) is commonly used for FA derivatization for gas chromatography-mass spectrometry (GC-MS) quantification by chemical ionization (CI). While CI is the conventional ionization mode for PFBBr derivatization, the electron ionization (EI) source has also demonstrated efficacy in achieving satisfactory analytical performance for the analysis of PFB esters. In this study, we present a novel approach utilizing PFBBr-derivatization on a GC-EI-MS platform to quantitatively analyze a comprehensive range of 44 fatty acids (FAs) spanning from C2 to C24. The method's sensitivity, precision, accuracy, linearity, recovery, and matrix effect were rigorously validated against predetermined acceptance criteria. In comparison to the conventional CI ionization mode, the utilization of PFBBr-derivatization in GC-EI-MS exhibits a wider range of applications and achieves comparable sensitivity levels to the conventional CI platform. By using this method, we successfully quantified 44 FAs in plasma and feces samples from the mice with deoxynivalenol (DON)-induced kidney injury. Among these, the levels of most FA species were increased in the DON-exposure group compared with the control group. The orthogonal partial least squares discriminant analysis (OPLS-DA) of all the tested FAs showed a visual separation of the two groups, indicating DON exposure resulted in a disturbance of the FA profile in mice. These results indicate that the established method by integration of GC-MS with PFBBr derivatization is an efficient approach to quantify the comprehensive FA profile, which includes short-, medium- and long-chain FAs. In addition, our study provides new insights into the mechanism underlying DON exposure-induced kidney injury.


Subject(s)
Electrons , Fatty Acids , Fluorobenzenes , Fluorocarbons , Animals , Mice , Gas Chromatography-Mass Spectrometry/methods , Fatty Acids/analysis , Feces/chemistry
13.
Article in English | MEDLINE | ID: mdl-38573102

ABSTRACT

A novel Gram-positive strain, B1T, was isolated from uranium-contaminated soil. The strain was aerobic, rod-shaped, spore-forming, and motile. The strain was able to grow at 20-45 °C, at pH 6.0-9.0, and in the presence of 0-3 % (w/v) NaCl. The complete genome size of the novel strain was 3 853 322 bp. The genomic DNA G+C content was 45.5 mol%. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain B1T has the highest similarity to Aneurinibacillus soli CB4T (96. 71 %). However, the novel strain showed an average nucleotide identity value of 89.02 % and a digital DNA-DNA hybridization value of 37.40 % with strain CB4T based on the genome sequences. The major fatty acids were iso-C15 : 0 and C16 : 0. The predominate respiratory quinone was MK7. Diphosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine, phosphatidylglycerol, unidentified phospholipids, an unidentified aminolipid and an unidentified lipid were identified as the major polar lipids. The phylogenetic, phenotypic, and chemotaxonomic analyses showed that strain B1T represents a novel species of the genus Aneurinibacillus, for which the name Aneurinibacillus uraniidurans sp. nov. is proposed. The type strain is B1T (=GDMCC 1.4080T=JCM 36228T). Experiments have shown that strain B1T demonstrates uranium tolerance.


Subject(s)
Fatty Acids , Uranium , Base Composition , Fatty Acids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , DNA, Bacterial/genetics , Bacterial Typing Techniques , Bacteria , Soil
14.
Nutrients ; 16(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38612957

ABSTRACT

A meta-analysis suggested that marine n-3 polyunsaturated fatty acids (PUFAs), e.g., eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), might reduce cancer mortality. However, a randomized clinical trial of marine n-3 PUFA and vitamin D supplementation failed to verify this benefit. This study aimed to investigate the potential interaction between vitamin D supplementation and serum EPA and DHA levels. This post hoc analysis of the AMATERASU trial (UMIN000001977), a randomized controlled trial (RCT), included 302 patients with digestive tract cancers divided into two subgroups stratified by median serum levels of EPA + DHA into higher and lower halves. The 5-year relapse-free survival (RFS) rate was significantly higher in the higher half (80.9%) than the lower half (67.8%; hazard ratio (HR), 2.15; 95% CI, 1.29-3.59). In the patients in the lower EPA + DHA group, the 5-year RFS was significantly higher in the vitamin D (74.9%) than the placebo group (49.9%; HR, 0.43; 95% CI, 0.24-0.78). Conversely, vitamin D had no effect in the higher half, suggesting that vitamin D supplementation only had a significant interactive effect on RFS in the lower half (p for interaction = 0.03). These results suggest that vitamin D supplementation may reduce the risk of relapse or death by interacting with marine n-3 PUFAs.


Subject(s)
Fatty Acids , Gastrointestinal Neoplasms , Humans , Dietary Supplements , Vitamins , Prognosis , Vitamin D , Docosahexaenoic Acids , Eicosapentaenoic Acid , Randomized Controlled Trials as Topic
15.
Sci Rep ; 14(1): 9343, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38653766

ABSTRACT

This study aimed to examine the viability of human blastocysts after warming with fatty acids (FAs) using an in vitro outgrowth model and to assess pregnancy outcomes after a single vitrified-warmed blastocyst transfer (SVBT). For the experimental study, we used 446 discarded vitrified human blastocysts donated for research purposes by consenting couples. The blastocysts were warmed using FA-supplemented (FA group) or non-FA-supplemented (control group) solutions. The outgrowth area was significantly larger in the FA group (P = 0.0428), despite comparable blastocyst adhesion rates between the groups. Furthermore, the incidence of outgrowth degeneration was significantly lower in the FA group than in the control group (P = 0.0158). For the clinical study, we retrospectively analyzed the treatment records of women who underwent SVBT in natural cycles between January and August 2022. Multiple covariates that affected the outcomes were used for propensity score matching as follows: 1342 patients in the FA group were matched to 2316 patients in the control group. Pregnancy outcomes were compared between the groups. The rates of implantation, clinical pregnancy, and ongoing pregnancy significantly increased in the FA group after SVBTs (P = 0.0091-0.0266). These results indicate that warming solutions supplemented with FAs improve blastocyst outgrowth and pregnancy outcomes after SVBTs.


Subject(s)
Blastocyst , Cryopreservation , Embryo Transfer , Fatty Acids , Pregnancy Outcome , Propensity Score , Humans , Female , Pregnancy , Adult , Embryo Transfer/methods , Cryopreservation/methods , Retrospective Studies , Vitrification , Pregnancy Rate , Embryo Implantation , Fertilization in Vitro/methods
16.
Food Res Int ; 184: 114213, 2024 May.
Article in English | MEDLINE | ID: mdl-38609212

ABSTRACT

Understanding the impact of minor components and the fatty acid profile of oil on oleogel properties is essential for optimizing their characteristics. Considering the scarcity of literature addressing this aspect, this study aimed to explore the correlation between these factors and the properties of beeswax and stearic acid-based oleogels derived from rice bran oil and sesame oil. Minor oil components were modified by stripping the oil, heating the oil with water, and adding ß-sitosterol. Oleogels were then prepared using a mixture of beeswax and stearic acid (3:1, w/w) at a concentration of 11.74 % (w/w). The properties of oils and oleogels were evaluated. The findings indicated that minor components and fatty acid composition of the oils substantially influence the oleogel properties. Removing minor components by stripping resulted in smaller and less uniformly distributed crystals and less oil binding capacity compared to the oleogels prepared from untreated oils. A moderate amount of minor components exhibited a significant influence on oleogel properties. The addition of ß-sitosterol did not show any influence on oleogel properties except for the oleogel made from untreated oil blend added with ß-sitosterol which had more uniform crystals in the microstructure and demonstrated better rheological stability when stored at 5 °C for two months. The oil composition did not show any influence on the thermal and molecular properties of oleogels. Consequently, the oleogel formulation derived from the untreated oil blend enriched with ß-sitosterol was identified as the optimal formula for subsequent development. The findings of this study suggest that the physical and mechanical properties as well as the oxidative stability of beeswax and stearic acid-based oleogels are significantly affected by the minor constituents and fatty acid composition of the oil. Moreover, it demonstrates that the properties of oleogels can be tailored by modifying oil composition by blending different oils.


Subject(s)
Fatty Acids , Stearic Acids , Waxes , Rice Bran Oil , Organic Chemicals
17.
Food Res Int ; 184: 114243, 2024 May.
Article in English | MEDLINE | ID: mdl-38609222

ABSTRACT

Recent explorations into rice bran oil (RBO) have highlighted its potential, owing to an advantageous fatty acid profile in the context of health and nutrition. Despite this, the susceptibility of rice bran lipids to oxidative degradation during storage remains a critical concern. This study focuses on the evolution of lipid degradation in RBO during storage, examining the increase in free fatty acids (FFAs), the formation of oxylipids, and the generation of volatile secondary oxidation products. Our findings reveal a substantial rise in FFA levels, from 109.55 to 354.06 mg/g, after 14 days of storage, highlighting significant lipid deterioration. Notably, key oxylipids, including 9,10-EpOME, 12,13(9,10)-DiHOME, and 13-oxoODE, were identified, with a demonstrated positive correlation between total oxylipids and free polyunsaturated fatty acids (PUFAs), specifically linoleic acid (LA) and α-linolenic acid (ALA). Furthermore, the study provides a detailed analysis of primary volatile secondary oxidation products. The insights gained from this study not only sheds light on the underlying mechanisms of lipid rancidity in rice bran but also offers significant implications for extending the shelf life and preserving the nutritional quality of RBO, aligning with the increasing global interest in this high-quality oil.


Subject(s)
Lipidomics , Lipolysis , Fatty Acids , Fatty Acids, Nonesterified , Linoleic Acid , Rice Bran Oil
18.
Food Res Int ; 184: 114253, 2024 May.
Article in English | MEDLINE | ID: mdl-38609231

ABSTRACT

Sea cucumbers are a rich source of bioactive compounds and are gaining popularity as nutrient-rich seafood. They are consumed as a whole organism in Pacific regions. However, limited data are available on the comparison of their lipid composition and nutritional value. In this study, untargeted liquid chromatography/mass spectrometry was applied to comprehensively profile lipids in the skin, meat, and intestinal contents of three color-distinct edible sea cucumbers. Multivariate principal component analysis revealed that the lipid composition of the intestinal contents of red, black, and blue sea cucumbers differs from that of skin, and meats. Polyunsaturated fatty acids (PUFAs) are abundant in the intestinal contents, followed by meats of sea cucumber. Lipid nutritional quality assessments based on fatty acid composition revealed a high P:S ratio, low index of atherogenicity, and high health promotion indices for the intestinal contents of red sea cucumber, suggesting its potential health benefits. In addition, hierarchical cluster analysis revealed that the intestinal contents of sea cucumbers were relatively high in PUFA-enriched phospholipids and lysophospholipids. Ceramides are abundant in black skin, blue meat, and red intestinal content samples. Overall, this study provides the first insights into a comprehensive regio-specific profile of the lipid content of sea cucumbers and their potential use as a source of lipid nutrients in food and nutraceuticals.


Subject(s)
Sea Cucumbers , Animals , Ceramides , Cluster Analysis , Dietary Supplements , Fatty Acids
19.
Food Res Int ; 184: 114260, 2024 May.
Article in English | MEDLINE | ID: mdl-38609237

ABSTRACT

The aim of this study was to evaluate meat quality and changes in the meat exudate metabolome of different beef muscles (5 d postmortem, longissimus lumborum and psoas major muscles) during wet-aging (additional 3, 7, 14, 21, and 28 d of aging). Shear force of meat declined significantly (P < 0.001) with aging, meanwhile, increased myofibril fragmentation index, lipid and protein oxidation with aging were observed (P < 0.01). Psoas major (PM) showed significantly higher (P < 0.05) purge loss, centrifugal loss, and cooking loss, as well as higher tenderness and more severe lipid and protein oxidation (P < 0.01) than longissimus lumborum (LL) during aging. Principal component analysis of the metabolomic profiles revealed distinct clusters according to the period of aging and the type of muscle simultaneously. Overabundant amino acids, peptides, oxidized fatty acids, and hydroxy fatty acids were found in long-term aged meat exudates, and forty metabolites were significantly correlated with meat quality characteristics. Fifty-nine metabolites were significantly affected by muscle type. These results demonstrated the potential possibility of evaluating meat quality using meat exudate metabolomics.


Subject(s)
Metabolome , Myofibrils , Animals , Cattle , Castor Oil , Exudates and Transudates , Fatty Acids , Meat
20.
Arq Bras Cardiol ; 121(3): e20230487, 2024.
Article in Portuguese, English | MEDLINE | ID: mdl-38597553

ABSTRACT

BACKGROUND: Adhering to a diet adequate in macronutrients is crucial for the secondary prevention of cardiovascular diseases. OBJECTIVE: To assess the prevalence of adherence to recommendations for the consumption of dietary fatty acids for the prevention and treatment of cardiovascular diseases and to estimate whether the presence of certain cardiovascular risk factors would be associated with adherence. METHODS: Cross-sectional study using baseline data from 2,358 participants included in the "Brazilian Cardioprotective Nutritional Program Trial". Dietary intake and cardiovascular risk factors were assessed. Adequate intake of polyunsaturated fatty acids (PUFA) was considered as ≥10% of total daily energy intake; for monounsaturated fatty acids (MUFA), 20%; and for saturated fatty acids (SFA), <7% according to the Brazilian Society of Cardiology. A significance level of 5% was considered in the statistical analysis. RESULTS: No participant adhered to all recommendations simultaneously, and more than half (1,482 [62.9%]) did not adhere to any recommendation. Adherence exclusively to the SFA recommendation was the most prevalent, fulfilled by 659 (28%) participants, followed by adherence exclusively to the PUFA (178 [7.6%]) and MUFA (5 [0.2%]) recommendations. There was no association between the number of comorbidities and adherence to nutritional recommendations (p = 0.269). Participants from the Brazilian Northeast region showed a higher proportion of adherence to SFA consumption recommendations (38.42%) and lower adherence to PUFA intake (3.52%) (p <0.001) compared to other regions. CONCLUSIONS: Among the evaluated sample, there was low adherence to nutritional recommendations for dietary fatty acid consumption.


FUNDAMENTO: A adesão à uma alimentação adequada em macronutrientes é fundamental para a prevenção secundária de doenças cardiovasculares. OBJETIVO: Avaliar a prevalência de adesão às recomendações de consumo de ácidos graxos para prevenção e tratamento de doenças cardiovasculares, e estimar se a presença de determinados fatores de risco cardiovascular estaria associada à adesão. MÉTODOS: Estudo transversal com os dados de linha de base de 2358 participantes do estudo "Brazilian Cardioprotective Nutritional Program Trial". Dados de consumo alimentar, e fatores de risco cardiovascular foram avaliados. Foi considerada, de acordo com a Sociedade Brasileira de Cardiologia, uma ingestão adequada de ácidos graxos poli-insaturados (AGPI) ≥10% do consumo total de energia diária, para ácidos graxos monoinsaturados (AGM), 20% e para ácidos graxos saturados (AGS), <7%. Na análise estatística foi considerando nível de significância de 5%. RESULTADOS: Nenhum participante aderiu a todas as recomendações de forma simultânea e mais da metade (1482 [62,9%]) não aderiu a nenhuma recomendação. A adesão exclusivamente à recomendação de AGS foi a mais prevalente, sendo cumprida por 659 (28%) dos participantes, seguida da adesão exclusivamente à recomendação de AGP (178 [7,6%]) e de AGM (5 [0,2%]). Não houve associação entre o número de comorbidades e a adesão às recomendações nutricionais (p =0,269). Os participantes da região Nordeste do país apresentaram maior proporção de adesão às recomendações para consumo de AGS (38,42%), e menor para ingestão de AGPI (3,52%) (p <0,001) em comparação às demais. CONCLUSÕES: Na amostra avaliada, evidenciou-se baixa adesão às recomendações nutricionais para consumo de ácidos graxos.


Subject(s)
Cardiovascular Diseases , Fatty Acids , Humans , Dietary Fats , Cardiovascular Diseases/etiology , Secondary Prevention , Cross-Sectional Studies , Fatty Acids, Unsaturated , Fatty Acids, Monounsaturated
SELECTION OF CITATIONS
SEARCH DETAIL